
STAN
Structure Analysis for Java

Version 2

White Paper

Fall 2009

Abstract: This paper gives a brief introduction to structure analysis
using STAN, a static code analysis tool bringing together Java
development and quality assurance in a natural way.

STAN encourages developers and project managers in visualizing
their design, understanding code, measuring quality and reporting
design flaws.

STAN supports a set of carefully selected metrics, suitable to cover
the most important aspects of structural quality. Special focus has
been set on visual dependency analysis, a key to structure analysis.

STAN seamlessly integrates into the development process. That way,
developers take care about design quality right from the start. Project
managers use STAN as a monitoring and reporting tool.

STAN – Structure Analysis for Java

Table of Contents
Introduction..3

Software Structure..3
Rotten versus Good Design..3
Fighting Complexity..4
What is Structure Analysis?..4

Feature Survey...5
Code Analysis..5
Dependencies..5

Composition..7
Couplings..8
Sandbox..8
Other Views..8

Metrics..9
Ratings..9
Violations...10
Queries..11
Maps..11

Reports...12
Eclipse Integration..12

Advanced Topics...13
Acyclic Dependencies Principle...13

Cycles..13
Tangles...13

Stable Abstractions Principle...14
Main Sequence...15
Distance...15

Conclusion..16

Copyright © 2008 Odysseus Software 2 www.stan4j.com

STAN – Structure Analysis for Java

Introduction
As a matter of fact, many projects fail due to lack of software quality. Therefore, having an eye on
code quality is not just an option, but may well prove mission critical. Furthermore, it's not
appropriate to push quality control to the end of the software engineering process. Since early
detection of quality issues makes them easy to resolve, monitoring quality should be placed as
close as possible to the developer.

Over the past few years we observe that more and more companies recognize the importance of
software quality. As part of this trend, testing has been widely accepted as an integral part of
development. However, testing alone is only one step to go on our way to high quality software
products. Equally important, we need to continuously validate our software against well
established design principles, helping us to improve maintainability, flexibility as well as –
testability.

When looking for solutions to ease development, control design and improve quality, it is worth
considering the integration of structure analysis into the software engineering process. This is
where STAN, a new structure analysis tool for Java, comes into play. STAN puts quality assurance
to the hand of the developer, thereby achieving these goals with minimal effort.

Software Structure

Artifacts are the things that make up a code base. For example, in Java, methods and fields are the
building blocks for classes. Classes are organized into packages and packages are bundled into
libraries. Finally, a set of libraries makes up an application. Members and classes lie on the code
layer, whereas packages and libraries lie on the design layer.

Software Structure is understood as the way

1. how artifacts build into higher level artifacts

2. how artifacts depend on each other.

During development, the structure constantly changes. E. g., a new class is placed into a particular
package or a new method adds dependencies to other classes and packages.

Structure is not just something hidden in the background. Structure reflects our design. Structure is
our design!

Rotten versus Good Design

As long as a project is small, developers have a vital image of their design in mind. They know
every corner of their code and everything seems to be under control. As the project size evolves,
however, things change: suddenly the software is hard to test, extend and maintain. It tends to be
monolithic and somehow everything seems to depend on everything else.

Robert C. Martin describes this as “The software starts to rot like a piece of bad meat”.

Copyright © 2008 Odysseus Software 3 www.stan4j.com

STAN – Structure Analysis for Java

Moreover, he identifies the following odors (among others):

● Rigidity – The system is hard to change because every change forces many other changes.

● Fragility – Changes cause the system to break in conceptually unrelated places.

● Immobility – It's hard to disentangle the system into reusable components.

● Viscosity – Doing things right is harder than doing things wrong.

● Opacity – It is hard to read and understand. It does not express its intend well.

To the contrary, a good design turns out to be flexible, solid, mobile, fluid and transparent.

Fighting Complexity

The structure of large code bases tends to become very complex. Over-complex systems are hard
to understand and maintain and thus do often break. Keeping complexity on a manageable level is
a challenge.

We certainly must fail if we let our software structure evolve arbitrarily. It is therefore essential to
keep an eye on it. Fortunately, there are common design principles which – if we follow them –
can help us to succeed. We need to continuously validate our structure against these principles.
And we need to discover and fix design violations early, before our software starts to rot!

What is Structure Analysis?

Structure analysis is more than just measuring metrics and listing threshold violations. Structure
analysis is about breaking down the system's complexity and letting the user inspect its artifacts at
any level, from different perspectives.

An important aspect is visualization. A picture is worth a thousand words! A good structure
analysis tool presents and visualizes the structural design in a way that is easy to understand for
humans. If you need to learn the tool's language, there's something wrong.

When it comes to dependencies, a good structure analysis tool needs advanced graph layout
capabilities to create neatly arranged dependency graphs. The user should be able to navigate
through these graphs, to drill down, and so on.

A good structure analysis tool should support “modern” metrics. For each artifact, metric violations
should be listed and ranked, allowing the user to distinguish important issues from negligible ones.

Not forget to mention, a good structure analysis tool should be easy to handle and useful from the
beginning. It will be a natural part of daily development, because it's fun!

So far we focused on structure analysis as a development task. From time to time, it is also
desirable to measure the overall quality of our structural design. Project managers need reporting
functionality at the touch of a button.

Reports should contain meaningful information about the structural quality of a code base. Of
course, metric violations should be listed. However, reports may also include visualizations of
certain design aspects or selected design violations. Reports also provide an easy way to trace
structural quality over time.

Copyright © 2008 Odysseus Software 4 www.stan4j.com

STAN – Structure Analysis for Java

Feature Survey
STAN provides you with structure analysis for Java. STAN analyzes byte code rather than source
code. You don't need the sources and you can directly analyze any compiled Java code, whether
it's yours or not.

STAN is available in two variants:

1. as a standalone application for Windows and Mac OS,

2. as an extension to the Eclipse Integrated Development Environment (IDE)

The standalone application is targeted to architects and project managers who are typically not
using the IDE.

The Eclipse extension integrates STAN seamlessly into the IDE and allows the developer to quickly
explore the structure for any bunch of code she desires.

Code Analysis

While analyzing Java byte code, STAN collects all the information needed to build a detailed
model of the application's structure. The code base is determined by choosing Java archive (JAR)
files and class folders. Filter Patterns may be provided to include or exclude specific parts, e. g. to
ignore test classes.

The Level of Detail specifies if our model shall include the member layer with all the classes' fields
and methods or if it shall be limited to the class layer and above.

We have already mentioned Java's package concept as the basic way for grouping classes into
higher level units. However, the package structure also builds a tree. For example, the packages
com.stan4j.db and com.stan4j.ui are sub-packages of package com.stan4j. To take
this into account, STAN allows you to toggle between the Flat Packages and Package Tree modes.

As another point, you might want to look at your application as one big code base or you might
want to pay respect to the library layer. By switching to Show Libraries mode, you can inspect
each library on its own as well as how the libraries are related to each other.

Dependencies

When dealing with software structure, dependency analysis becomes a central topic. For non-
trivial applications, it's almost impossible to understand or even control how classes, packages
and package trees interact with each other by just examining source code.

However, understanding how things depend on each other is crucial for making the right design
decisions during development. We cannot expect to have a good design if we don't know it!

What we really want is to look at our artifacts, see what they need and what needs them. Given
this, we can make better decisions and will end up with a better design. Sometimes we discover
the need for refactoring to improve our design. Sometimes we just want to discuss some design
issues. Instead of stumbling through the code, isn't it much better to look at a dependency graph?

Copyright © 2008 Odysseus Software 5 www.stan4j.com

STAN – Structure Analysis for Java

Unfortunately, it's impossible to look at everything at once. To get useful graphs, we have to
carefully select the perspectives and scopes. Otherwise we'll end up with very big and clumsy
graphs. For example, we may want to look at an artifact to see how its contained artifacts interact
or how the artifact itself interacts with the rest of the application.

Another issue is graph layout. Without sophisticated layout capabilities, even rather small graphs
cannot be put into a picture we want to look at. At the same time, graph layout is a complex task
and much effort has been put into STAN's graph layout engine to obtain good and fast results.

STAN shows dependency graphs for all levels of abstraction. Generally, nodes denote artifacts
and edges denote dependencies. An edge's weight reflects
the dependency's strength, which is the number of underlying
code dependencies.

Selecting an edge will show you those dependencies.

Graphs may be zoomed, narrowed and their orientation may be flipped to get optimal insight into
the dependency relations of the artifact under consideration.

Copyright © 2008 Odysseus Software 6 www.stan4j.com

STAN – Structure Analysis for Java

Composition

The Composition View allows to look into the selected artifact, to see all its contained children
and the dependencies between them. You may investigate
dependencies between members of a class, classes of a package,
packages, children of a package tree and between libraries.

STAN's layout engine guarantees, that – as far as possible – edges
point into the same direction, either top to bottom or left to right,
depending on the chosen layout orientation.

Artifacts can be expanded to arbitrary depth to dive deeper into the structure.

Additionally you may navigate into any of the displayed artifacts as well as up and down the
artifact hierarchy.

Copyright © 2008 Odysseus Software 7 www.stan4j.com

STAN – Structure Analysis for Java

Couplings

The Couplings View allows to look around the selected artifact, to see all its incoming and
outgoing dependencies. You may investigate
dependencies to and from classes, packages,
package trees or libraries.

In addition to the direct dependencies one can
optionally make visible any intermediate
dependencies between the displayed artifacts.

Here, artifacts can be split to explore how its children contribute to the shown dependencies.

Sandbox

The Sandbox View allows to look at dependencies between any classes, packages, package trees
or libraries. Artifacts can be easily added using Drag'n Drop from the Structure Explorer. Artifacts

may be dropped into the Sandbox's top level pane or into a node that represents an ancestor of
the drop node. Dropping into a collapsed node will automatically expand the node. Higher level
artifacts may be split to explore how its children contribute to the shown dependencies. Expand/
Collapse is also supported.

Other Views

If the graph is too large to fit in your view, the dependency graph overview simplifies navigation.

● The Graph Thumbnail lets you choose the
shown region visually.

● The Graph Contents allows you to reveal a
particular node by selecting it from a list.

Copyright © 2008 Odysseus Software 8 www.stan4j.com

STAN – Structure Analysis for Java

Metrics

To be able to value certain aspects of structural quality, STAN also computes several metrics. A
metric is simply a function mapping artifacts of some kind to
numbers. Metric computation can be as simple as counting
the number of classes in a package or as complex as
determining the average component dependency in the
package dependency graph.

STAN's aim is not to be a mass metrics tool. There are
hundreds of metrics that could be computed quite easily,
but who really wants to see them all?

STAN currently supports

● Several counting metrics

● Estimated Lines of Code

● McCabe's Cyclomatic Complexity

● Average Component Dependency, Fat and Tangled

● Metrics by Robert C. Martin

● Metrics by Chidamber & Kemerer

Metrics are collected into categories. A whole category at
once as well as individual
metrics can be enabled
or disabled.

Where it makes sense,
STAN promotes metric averages and distributions from lower
level to higher level artifacts.

Selecting such a metric on a higher level artifact will show the
distribution as a bar chart.

Ratings

When it comes to assessment, metric thresholds are needed to let the user define the boundaries
between acceptable and unacceptable metric values. However,
a single threshold may not provide us with the granularity desired
for certain metrics.

For example, we might want to say, a value for a method's lines
of code up to 30 is perfect, up to 60 is still fine, up to 120 is
critical, above 120 is really bad and 240 is the worst we can
imagine.

STAN provides what we call Traffic Light Ratings, partitioning the value range into green, amber and
red subranges. Back to our example, 70 lines of code is better than 110. So, even if both values fall

Copyright © 2008 Odysseus Software 9 www.stan4j.com

STAN – Structure Analysis for Java

into the amber range, they will be rated differently.

STAN comes with a reasonable set of default ratings. However, ratings can be added, removed
and adjusted easily. Furthermore, the current settings can be exported and imported. This allows
to share preferences with others or to switch between multiple profiles.

Violations

An artifact is said to violate a metric if it is rated amber or red for that metric. For each artifact,
STAN shows you all metrics that are violated by the artifact itself or by contained artifacts.

To take further profit of our ratings, we can use them to rank metric violations. However, simply
sorting by rating isn't good enough. What we need is a measure for relevance.

STAN assumes that violations at “big” artifacts are worse than violations at “small” ones: it should be
more relevant if a package received a bad rating for some metric A than if one of its 42 classes
received a similar rating for some metric B. Moreover, even if a package is rated amber for A, this
might be more relevant than if one of its classes is rated red for B.

To take this into account, STAN prioritizes a metric violation by weighting its rating with the amount
of the artifact's underlying code. The result is shown in the Violations View.

Finally, for a given artifact, we might want to get a feeling for how metrics contribute to its
violations and how badly the artifact is polluted by violations. STAN's Pollution Chart shows us
exactly this.

Selecting a slice as shown above filters the Violations View to the corresponding metric.

Copyright © 2008 Odysseus Software 10 www.stan4j.com

STAN – Structure Analysis for Java

The wider the ring, the higher the degree of pollution of the underlying code. On the application
level, the ring's thickness can serve as a quick indicator for the overall structural quality of the code
base.

Queries

Metric queries allow to track down artifacts that exceed some metric threshold or rating category.
You'll find it convenient to have these artifacts at one place, to browse and investigate them,
without loosing scope. For example, the query “Tangled > 0” will give all the package trees with
cyclic dependencies between their children:

Double clicking a row will make the corresponding package tree the current artifact, thus showing
the tangled graph in the Composition View.

Queries may be defined for any supported metric by specifying a threshold constant (as in the
example above). Additionally, queries for rated metrics may be defined to match certain rating
categories, I.e. “amber or red” or “red”, thus collecting all artifacts violating the given metric.

Maps

Treemaps are a great tool for space efficient visualization of hierarchical structures. In fact, STAN
uses treemaps in several places. The Map View is used to visualize the ratings of artifacts from a
hierarchy for a given metric. For example, a map for the Tangled metric will show the package tree
hierarchy as nested cells, whose background color reflects the ratings:

Double clicking a cell will make the corresponding package tree the current artifact, thus showing
the tangled graph in the Composition View.

Copyright © 2008 Odysseus Software 11 www.stan4j.com

STAN – Structure Analysis for Java

Reports

All gone after closing STAN? No! STAN generates customizable reports, ranging from giving a brief
overview to detailed lists of metric violations. STAN reports currently may contain some or all of
the following sections:

● A library dependency graph image

● A metrics summary for the application

● Top 10 ranked metric violations

● All metric violations grouped by metric

● Dependency graph images of package tree as well as flat package tangles

● Chart for Robert C. Martin's Distance (D) metric

Reports capture the structural quality of a project at a certain point of time. Periodically generating
reports can help to trace quality and discover bad trends early.

STAN provides an Ant task which can be used to generate reports from an Ant script, without
running the UI. This enables for generation of quality reports as part of the build process.

Eclipse Integration

As stated earlier, STAN seamlessly integrates into Eclipse, the leading platform for Java
development, by contributing the Structure Analysis Perspective to the IDE.

Running an analysis is as simple as selecting Java elements in Eclipse' Package Explorer, opening
the context menu and choosing “Run as... Structure Analysis”.

Launch configurations are stored for later use and may be adjusted to your needs in the standard
Eclipse Run Dialog.

Even if STAN parses Java byte code, navigation from code layer artifacts to source code is
supported: where appropriate, STAN provides “Open Declaration” items in context menus.

As another bonus, STAN contributes views to graphically show Eclipse project dependencies as
well as OSGi bundle dependencies.

Copyright © 2008 Odysseus Software 12 www.stan4j.com

STAN – Structure Analysis for Java

Advanced Topics
Now that we covered the very basics of structure analysis with STAN, let's dive a little deeper and
learn about some common design principles, their associated metrics and visualizations.

Acyclic Dependencies Principle

Cycled components can only be used together. They can only be tested, reused, deployed and
understood together. The bad thing with cycles is that every node on a cycle depends on any
other. Having lots of cycles lets explode the number of indirect dependencies within the system.
Without early intervention, the system starts to rot.

We should therefore avoid dependency cycles within the design layer. That is, no library, package
or package tree dependency cycles! This is known as the Acyclic Dependencies Principle.

Cycles

Let's assume we have cyclic dependencies and want to remove them. Therefore, we want to do
some refactoring that modifies our dependency graph to be acyclic. A naive approach would be
to list all cycles, break them, one by one, until no cycles are left. Breaking a cycle could be done
by removing or reversing a dependency. Let's see how that works.

Consider a graph with all pairs of nodes connected by edges into both directions. If we have two
nodes, there's exactly one cycle. Adding a third node,
we get five cycles: three cycles between pairs of nodes
and two cycles containing all three nodes, clockwise
and counterclockwise. Now let's increase the number of
nodes to – say – ten. Guess how many cycles we get?
More than a million! Seems like we better abandon the
idea of fiddling around with individual cycles...

Tangles

A Tangle is a subgraph with at least two nodes, where each node is reachable from each other. It
is a tangle, where our cycles live. Every cycle lies in a tangle and every tangle consists of just
cycles. In other words: A graph is acyclic if and only if it has no tangles.

Instead of breaking individual cycles, we could try to break tangles! Breaking a tangle means to
transform it into an acyclic graph.

However, the edges in STAN's dependency graphs are weighted with the number of underlying
code dependencies. Obviously, it is easier to remove or reverse a light edge than a heavy one.
Therefore, we should select a minimum weight set of edges to break our tangle.

In graph theory, this is known as a Minimum Feedback (Arc) Set. The minimum feedback set is the
“predetermined breaking point” of a tangle. Or, from another point of view, the minimum
feedback set contains the edges, that point into the “wrong” direction. Feedback edges are the
primary key to the elimination of cyclic dependencies.

Copyright © 2008 Odysseus Software 13 www.stan4j.com

STAN – Structure Analysis for Java

STAN's graph layout algorithm takes this into account: in a dependency graph, edges from the
minimum feedback
set point into the
opposite direction
than other edges.
Additionally, for
design tangles,
these edges are
colored red.

When looking at a tangled graph, it's often hard to identify the boundaries of a tangle. Its nodes
may be spread over the graph, so it's sometimes difficult to see which nodes and edges make up
the tangle.

With STAN, you can partition dependency graphs into tangles. This isolates tangles by making
them compound
nodes. Note that
the partition graph
itself is acyclic: all
cycles have been
moved into the
tangle nodes. This
presentation is
optimal to focus
on cyclic depen-
dencies.

As a side effect, it
also reduces the
complexity of the graph, because edges between nodes inside and outside of a tangle have been
cumulated, now connecting the whole tangle with the outside world.

The Acyclic Dependencies Principle is reflected by the Tangled metric, which is calculated as the
ratio between the weight of the minimum feedback edges and the total weight of all edges in the
graph. Thus, values greater zero indicate cyclic dependencies.

Stable Abstractions Principle

Robert C. Martin proposed the idea that for well designed software there should be a specific
relationship between two package measures: the abstractness of a package, which shall express
the portion of contained abstract types, and its stability, which indicates whether the package is
mainly used by other artifacts (stable) or if it mainly depends on other artifacts (instable). The
desired relationship is captured in the Stable Abstractions Principle: A package should be as
abstract as it is stable. By sticking to this principle we avoid getting packages which are used
heavily by the rest of the application and which, at the same time, have a low degree of
abstraction. Such packages are a constant source of trouble, since they are hard to change or
extend.

Copyright © 2008 Odysseus Software 14 www.stan4j.com

STAN – Structure Analysis for Java

Main Sequence

Let's get a little bit more detailed now.

● The Abstractness A for package P is calculated as the ratio of the number of abstract types
contained in P to the total number of types in P. Thus, the resulting values range from zero
(only concrete classes) to one (only interfaces and abstract classes).

● The Instability I for package P is calculated as the ratio between the number of classes
outside P required by P and the total number of classes outside P related to P. As above,
the resulting values range from zero (only incoming dependencies) to one (only outgoing
dependencies).

What was this good for? Well, given these two metrics, the Abstractness and the Instability, we can
place every package of our application in a diagram which shows the unit square with the

Abstractness on the horizontal axis
and the Instability on the vertical axis.
Furthermore, we can restate the
Stable Abstractions Principle in
graphical terms: packages should not
lie too far away from the falling
diagonal of the diagram, which is
called the Main Sequence. This
means that packages with a low
degree of Instability should have a
high degree of Abstractness and vice
versa.

The packages which reside in the
corners apart from the Main
Sequence show specific problems:
the lower left corner is called the
Zone Of Pain, since its inhabitants are
stable and concrete, thereby
contravening the Stable Abstractions
Principle, whereas the upper right
corner is called the Zone Of

Uselessness containing packages that are highly abstract and that nobody depends upon. These
are the two areas of the diagram which should be avoided.

Distance

So now we've got everything together to define the Distance D, which indicates how far a package
is away from the Main Sequence:

D = A + I – 1

Calculating the Distance this way, we get values between -1 and 1. A zero value means the
package lies exactly on the Main Sequence, the sign indicates if the package is located above or

Copyright © 2008 Odysseus Software 15 www.stan4j.com

STAN – Structure Analysis for Java

below the Main Sequence. A derived metric, the Absolute Distance (|D|), omits the sign, thereby
allowing to compute meaningful average values for higher level artifacts.

STAN's Distance Chart shows you where your packages live, whether they are located near to the
Main Sequence, as desired, or if they tend to drift to the bad corners. Every package is displayed
by a bubble, the size of which is determined by the number of classes in the package. The color
of the bubble reflects the rating of the package's Distance value, which is, as always, adjustable to
your requirements.

Conclusion
Integrating STAN into the development process has several clear benefits:

● Structure analysis helps in understanding code as well as keeping code understandable.

● Dependency analysis provides sophisticated design diagrams.

● Design flaws will be detected early, where it's still easy to fix them.

● Expressive metrics are supported to ensure compliance with design principles.

● Highly customizable metric ratings allow the creation of individual quality profiles.

● Ranking metric violations helps to focus on most relevant issues.

● Reports provide all the essential information at a quick glance.

● Seamless Eclipse integration makes structure analysis available where needed mostly.

All in all, utilizing STAN can improve the overall quality of your software products, thereby
lowering costs, speeding up development and satisfying your customers.

Copyright © 2008 Odysseus Software 16 www.stan4j.com

	Introduction
	Software Structure
	Rotten versus Good Design
	Fighting Complexity
	What is Structure Analysis?

	Feature Survey
	Code Analysis
	Dependencies
	Composition
	Couplings
	Sandbox
	Other Views

	Metrics
	Ratings
	Violations
	Queries
	Maps

	Reports
	Eclipse Integration

	Advanced Topics
	Acyclic Dependencies Principle
	Cycles
	Tangles

	Stable Abstractions Principle
	Main Sequence
	Distance

	Conclusion

